Article thumbnail

Anion- and Proton-Dependent Gating of ClC-4 Anion/Proton Transporter under Uncoupling Conditions

By Gökce Orhan, Christoph Fahlke and Alexi K. Alekov

Abstract

ClC-4 is a secondary active transporter that exchanges Cl− ions and H+ with a 2:1 stoichiometry. In external SCN−, ClC-4 becomes uncoupled and transports anions with high unitary transport rate. Upon voltage steps, the number of active transporters varies in a time-dependent manner, resembling voltage-dependent gating of ion channels. We here investigated modification of the voltage dependence of uncoupled ClC-4 by protons and anions to quantify association of substrates with the transporter. External acidification shifts voltage dependence of ClC-4 transport to more positive potentials and leads to reduced transport currents. Internal pH changes had less pronounced effects. Uncoupled ClC-4 transport is facilitated by elevated external [SCN−] but impaired by internal Cl− and I−. Block by internal anions indicates the existence of an internal anion-binding site with high affinity that is not present in ClC channels. The voltage dependence of ClC-4 coupled transport is modulated by external protons and internal Cl− in a manner similar to what is observed under uncoupling conditions. Our data illustrate functional differences but also similarities between ClC channels and transporters

Topics: Channels and Transporters
Publisher: The Biophysical Society
OAI identifier: oai:pubmedcentral.nih.gov:3043216
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles