Skip to main content
Article thumbnail
Location of Repository

Metafore: The Afforest Deposition-Soil-Water-Vegatation Metamodel

By W. van Deursen, J. Mol, G.W. Heil and J. Kros


This chapter describes the development of the METAFORE metamodel for the AFFOREST project, focusing on aspects that are important in defining the role of the metamodel in the entire system. Two modes are distinguished: one in which the METAFORE metamodel operates in a batch mode for generating the AFFOREST-sDSS tables for decision support, and another mode of operating with an extended user interface and extended possibilities for evaluating detailed results. The various detailed process-based models are from different sources and each of the institutes had experts on the processes that were modelled. From these models, the individual partners developed meta-descriptions of their parts of the system. The task of the METAFORE metamodel was to combine all this knowledge into a single model executable, and assure a correct calculation of the values needed for the AFFOREST database and the AFFOREST-sDSS. The design of the METAFORE distinguishes a metamodel framework and the model components or submodels. The metamodel framework focuses on the interface and communication between the different submodels and it is responsible for the communication between the submodels. In this design, the submodels are merely servers, waiting to be initialized or called to perform one step of the simulation (i.e. one month or one year of the simulation). To do this, each submodel has only a limited set of exposed methods. Although the detailed process models, as part of their scientific development process, have been extensively validated and calibrated, this does not automatically assure a proper simulation of the processes by the metamodel. During the entire process of the development of METAFORE, the simulation behaviour of the METAFORE modules were constantly tested against the detailed process models. In the end, METAFORE has been developed as a simplification of the detailed models with a lesser demand on data. This means that the detailed behaviour in the process models can at best result in similar but aggregated behaviour in the METAFORE metamodel. It is concluded that the results are satisfactory

Year: 2007
OAI identifier:
Provided by: NARCIS
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.