Article thumbnail

Glutamate receptor-like channels are essential for chemotaxis and reproduction in mosses

By Carlos Ortiz-Ramírez, Erwan Michard, Alexander A. Simon, Daniel S. C. Damineli, Marcela Hernández-Coronado, Jörg D. Becker and José A. Feijó

Abstract

The deposited article version is a "Accelerated Article Preview" provided by Nature Publishing Group, and it contains attached the supplementary materials within the pdf.». This publication hasn't any creative commons license associated.Glutamate receptors are well characterized channels that mediate cell-to-cell communication during neurotransmission in animals. Nevertheless, information regarding their functional role in organisms without nervous systems is still limited. In plants, Glutamate Receptor-like (GLR) genes have been implicated in defence against pathogens, reproduction, control of stomata aperture and light signal transduction(1-5). However, the numerous GLR genes present in angiosperm genomes (20 to 70)(6) has prevented the observation of strong phenotypes in loss-of-function mutants. Here, we show that in the moss Physcomitrella patens, a basal land plant, mutation of GLR genes cause sperm failure in targeting the female reproductive organs. In addition, we show that GLR genes encode non-selective Ca(2+) permeable channels that can regulate cytoplasmic Ca(2+) and are needed to induce the expression of a BELL1-like transcription factor essential for zygote development. Our work reveals novel functions for GLRs in sperm chemotaxis and transcriptional regulation. Sperm chemotaxis is essential for fertilization in both animals and early land plants like bryophytes and pteridophytes. Therefore, our results are suggestive that ionotropic glutamate receptors may have been conserved throughout plant evolution to mediate cell-to-cell communication during sexual reproduction.Phillips University; Oxford University; University of Marburg; University of Muenster; MarieCurie ITN-Plant Origins grant: (FP7-PEOPLE-ITN-2008); FCT grants: (BEX-BCM/0376/2012; PTDC/BIA-PLA/4018/2012); NSF-US grant: (MCB 1616437/2016).info:eu-repo/semantics/acceptedVersio

Topics: Fertilization, Evolutionary developmental biology
Publisher: 'Springer Science and Business Media LLC'
Year: 2017
DOI identifier: 10.1038/nature23478
OAI identifier: oai:arca.igc.gulbenkian.pt:10400.7/780

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.