Article thumbnail

Combining nadir and oblique UAV imagery to reconstruct quarry topography: methodology and feasibility analysis

By Paolo Rossi, Francesco Mancini, Marco Dubbini, Francesco Mazzone and Alessandro Capra


The feasibility of unmanned-aerial-vehicle-based photogrammetry was assessed for the reconstruction of high-resolution topography and geomorphic features of quarries by nadir and off-nadir imagery. The test site was a quarry located in the rural area of Turi (Bari, southern Italy). Two processing scenarios were created. Nadir images were initially used, and images acquired with off-nadir angles were added. An accurate set of ground control points (GCPs) were surveyed for both georeferencing purposes and validation processes. In the reconstruction of the surfaces, an accuracy of a few centimeters was achieved in the final positioning of point clouds representing the main geometries of quarry environment. However, greatest differences were found along the edges or the lines characterized by sudden slope changes. To better understand such results, some characteristic quarry shapes depicted by both the scenarios were compared to those surveyed by a total station used as an independent benchmark technique. It allowed to define the benefits introduced by the joint use of nadir and oblique images in the delineation of quarry shapes, surface discontinuities and better descriptions of sub-vertical walls. Beside the evaluation of benefits introduced by use of oblique cameras, the effectiveness of the proposed methodology was also discussed with alternative technologies. Unmanned aerial platforms represent an effective solution, with the need for few accurate GCPs

Topics: UAV photogrammetry, 3D reconstruction, quarry topography, accuracy assessments, feasibility analysis.
Publisher: 'Informa UK Limited'
Year: 2017
DOI identifier: 10.1080/22797254.2017.1313097
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.