Location of Repository

General Model for Light Curves of Chromospherically Active Binary Stars

By L. Jetsu, G. W. Henry and J. Lehtinen

Abstract

The starspots on the surface of many chromospherically active binary stars concentrate on long-lived active longitudes separated by 180°. Shifts in activity between these two longitudes, the “flip-flop” events, have been observed in single stars like FK Comae and binary stars like σ Geminorum. Recently, interferometry has revealed that ellipticity may at least partly explain the flip-flop events in σ Geminorum. This idea was supported by the double-peaked shape of the long-term mean light curve of this star. Here we show that the long-term mean light curves of 14 chromospherically active binaries follow a general model that explains the connection between orbital motion, changes in starspot distribution, ellipticity, and flip-flop events. Surface differential rotation is probably weak in these stars, because the interference of two constant period waves may explain the observed light curve changes. These two constant periods are the active longitude period ##IMG## [http://ej.iop.org/images/0004-637X/838/2/122/apjaa65cbieqn1.gif] $(P_act)$ and the orbital period ##IMG## [http://ej.iop.org/images/0004-637X/838/2/122/apjaa65cbieqn2.gif] $(P_orb)$ . We also show how to apply the same model to single stars, where only the value of P act is known. Finally, we present a tentative interference hypothesis about the origin of magnetic fields in all spectral types of stars

Topics: 115 Astronomy, Space science, 115 Astronomy, Space science
Publisher: IOP Publishing
Year: 2017
OAI identifier: oai:helda.helsinki.fi:10138/178886
Journal:

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.