Article thumbnail

Atomistic Conversion Reaction Mechanism of WO3 in Secondary Ion Batteries of Li, Na, and Ca

By Yang He, Meng Gu, Haiyan Xiao, Langli Luo, Yuyan Shao, Fei Gao, Yingge Du, Scott X. Mao and Chongmin Wang

Abstract

Intercalation and conversion are two fundamental chemical processes for battery materials in response to ion insertion. The interplay between these two chemical processes has never been directly seen and understood at atomic scale. Here, using in situ HRTEM, we captured the atomistic conversion reaction processes during Li, Na, Ca insertion into a WO3 single crystal model electrode. An intercalation step prior to conversion is explicitly revealed at atomic scale for the first time for Li, Na, Ca. Nanoscale diffraction and ab initio molecular dynamic simulations revealed that after intercalation, the inserted ion–oxygen bond formation destabilizes the transition‐metal framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure. This study provides a full atomistic picture of the transition from intercalation to conversion, which is of essential importance for both secondary ion batteries and electrochromic devices.The interplay between ion intercalation and WO3 battery electrode conversion was investigated at atomic scale by using in situ HRTEM. The ion–oxygen bond formation destabilizes the WO3 framework which gradually shrinks, distorts and finally collapses to an amorphous W and MxO (M=Li, Na, Ca) composite structure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/1/anie201601542.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/2/anie201601542-sup-0001-misc_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135051/3/anie201601542_am.pd

Topics: conversion, intercalation, ion batteries, WO3, in situ TEM, Chemistry, Science
Publisher: 'Wiley'
Year: 2016
DOI identifier: 10.1002/anie.201601542
OAI identifier: oai:deepblue.lib.umich.edu:2027.42/135051
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/2027.42/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.