Skip to main content
Article thumbnail
Location of Repository

Bridging the semantic gap in multimedia information retrieval: top-down and bottom-up approaches

By J.S. Hare, P.A.S. Sinclair, P.H. Lewis, K. Martinez, P.G.B. Enser and C.J. Sandom


Semantic representation of multimedia information is vital for enabling the kind of multimedia search capabilities that professional searchers require. Manual annotation is often not possible because of the shear scale of the multimedia information that needs indexing. This paper explores the ways in which we are using both top-down, ontologically driven approaches and bottom-up, automatic-annotation approaches to provide retrieval facilities to users. We also discuss many of the current techniques that we are investigating to combine these top-down and bottom-up approaches

Topics: P100 Information Services
Year: 2006
OAI identifier:

Suggested articles


  1. (2004). A model for learning the semantics of pictures.
  2. (2003). A.: SCULPTEUR: Towards a New Paradigm for Multimedia Museum Information Handling. In: doi
  3. (2001). Adding multimedia to the semantic web: Building an mpeg-7 ontology. doi
  4. (2004). An inference network approach to image retrieval. doi
  5. (2005). Automated Image Annotation Using Global Features and Robust Nonparametric Density Estimation. doi
  6. (2005). Automatic annotation of images from the practitioner perspective. doi
  7. (2003). Automatic image annotation and retrieval using cross-media relevance models. In: doi
  8. (2004). Classification of user image descriptions. doi
  9. (1998). Combining textual and visual cues for contentbased image retrieval on the world wide web. In: doi
  10. (2000). Content-based image retrieval at the end of the early years. doi
  11. (2004). Coupling owl with mpeg-7 and tv-anytime for domain-specific multimedia information integration and retrieval. In: doi
  12. (1997). Enser, P.G.B.: Analysis of user need in image archives. doi
  13. (1994). G.W.: Using linear algebra for intelligent information retrieval. doi
  14. (2002). GATE: A framework and graphical development environment for robust NLP tools and applications. In: doi
  15. (1997). Image retrieval: Theoretical and empirical user studies on accessing information in images. In:
  16. (1999). Image-to-word transformation based on dividing and vector quantizing images with words. In:
  17. (2004). Integrating knowledge, semantics and content for user-centred intelligent media services: the acemedia project. In:
  18. (2004). Knowledge-based exploration of multimedia museum collections. In:
  19. (2003). Latent dirichlet allocation.
  20. (1990). M.L.: Fully automatic cross-language document retrieval using latent semantic indexing. In: doi
  21. (2003). Matching words and pictures.
  22. (2006). Mind the gap. doi
  23. (2003). Modeling annotated data. In: doi
  24. (2001). Modeling the shape of the scene: A holistic representation of the spatial envelope.
  25. (2004). Multimedia Distributed Knowledge Management doi
  26. (2004). Multiple bernoulli relevance models for image and video annotation. In: doi
  27. (2001). Negotiating the semantic gap: From feature maps to semantic landscapes. doi
  28. (2002). Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: doi
  29. (2003). On image auto-annotation with latent space models. In: doi
  30. (2003). Ontology-based medical image annotation with description logics. In: doi
  31. (2001). Ontology-based photo annotation. doi
  32. (1995). Pictorial information retrieval. doi
  33. (2003). S.: mSpace: interaction design for userdetermined, adaptable domain exploration in hypermedia.
  34. (2005). Saliency for Image Description and Retrieval.
  35. (2002). Scene-centered description from spatial envelope properties. In: doi
  36. (2005). Surveying the reality of semantic image retrieval. doi
  37. (2004). Using maximum entropy for automatic image annotation. doi
  38. (2000). W.I.: From features to semantics: Some preliminary results. In: doi
  39. (2005). Web Consortium: doi
  40. (2006). WordNet: a lexical database for the English language. http: // doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.