Article thumbnail

Genotype by environment interactions for grain yield of perennial rice derivatives (Oryza sativa L./Oryza longistaminata) in southern China and Laos

By Shilai Zhang, Jian Hu, Chundao Yang, Haitao Liu, Feng Yang, Jihua Zhou, Ben K. Samson, Chanthakhone Boualaphanh, Liyu Huang, Guangfu Huang, Jing Zhang, Wanqi Huang, Dayun Tao, Dome Harnpichitvitaya, Len J. Wade and Fengyi Hu

Abstract

Perennial grains have been proposed to stabilise fragile lands while contributing grain and grazing in mixed farming systems. Genotype by environment (GxE) interactions for grain yield were investigated in 22 perennial rice (Oryza sativa L./Oryza longistaminata) derivatives over four successive growing seasons at three sites in Yunnan in southern China and one site in Lao PDR. The GxE interaction accounted for 25.7% of the total sum of squares, with environment and genotype responsible for 57.4% and 16.9%, respectively. Cluster analysis identified seven environment and six genotype groups, which accounted for 55.6% of the GxE sum of squares. Principal component axes 1, 2 and 3 accounted for 42.3%, 19.1% and 16.5% of the GxE-SS, respectively, with PCA1 indicating yield potential, PCA2 delay in phenology under environmental stress, and PCA3 ratoon percentage. Environment groups differed in mean temperature, whether dry season or wet season, and occurrence of environmental stresses, such as periods of low minimum temperature or periods of rainfall deficit. Genotype groups differed in adaptation to these diverse environments. For genotype groups, G5 (PR23) was highest-yielding and broadly adapted across environments, while G1 (line 188, both 137s, both 139s, both 147s) was low-yielding and poorly adapted. Other genotype groups showed preferential adaptation: G3 (lines 60, 251, 264, Bt69, Bt71) to Simao/Dry Season (E3 and E4), G4 (lines 75, 243, 246, 249, 255) to Menglian/Wet Season (E1 and E2), G2 (line TZ) to Jing Hong 2013 (E7), and G6 (lines 56, 59, 214) to Jing Hong 2102 and Na Pok (E6 and E5). The results imply that regrowth success and maintenance of spikelet fertility over regrowth cycles are important for adaptation of perennial rice, especially to low minimum temperature at higher altitude and rainfall deficit at lower altitude, and future breeding programmes in perennial rice should address these environmental stresses. The high yield and broad adaptation of PR23 (G5) over environments makes it a prime candidate for release to stabilise fragile lands in the humid and subhumid tropics, while contributing grain and forage in mixed-farming systems

Topics: Adaptation, Land stability, Minimum temperature, Perennial crops, Rainfall deficit, 1102 Agronomy and Crop Science, 1111 Soil Science
Publisher: 'Elsevier BV'
Year: 2017
DOI identifier: 10.1016/j.fcr.2017.03.007
OAI identifier: oai:espace.library.uq.edu.au:UQ:636600
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://espace.library.uq.edu.... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles