Megawatt-scale solar variability study: an experience from a 1.2MWp photovoltaic system in Australia over three years

Abstract

With more photovoltaic (PV) systems being integrated into distribution networks, power utilities are facing many challenges in both planning and operation. Network operators are concerned with PV variability and associated necessity of voltage regulation, control coordination, reserve adequacy and dispatch constraints. While to address the obligatory connection agreement, it is vital for PV farm owners to accurately estimate PV variability and then provide the most cost-effective compensation method. In the literature, PV variability of different scales has been investigated over the last 20 years. However, little has focused on output fluctuations of PV systems with long-term and high-resolution recorded data at a low-voltage distribution feeder level where voltage regulation has become a serious issue. This is particularly true in Australia, where PV penetration is growing in many states and is expected to grow further in the near future. This study utilises the data of a distributed 1.2 MWp PV system in the University of Queensland recorded over the last three years with 1-min resolution to analyse the statistical characteristics of PV power variability. The results from this study will provide very useful information for both power utilities and solar farm owners regarding network operation and future PV system development

Similar works

This paper was published in University of Queensland eSpace.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.