Article thumbnail
Location of Repository

Revelation of p53-independent Function of MTA1 in DNA Damage Response via Modulation of the p21WAF1-Proliferating Cell Nuclear Antigen Pathway*

By Da-Qiang Li, Suresh B. Pakala, Sirigiri Divijendra Natha Reddy, Kazufumi Ohshiro, Shao-Hua Peng, Yi Lian, Sidney W. Fu and Rakesh Kumar

Abstract

Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and deacetylase (NuRD) complex, is a DNA-damage response protein and regulates p53-dependent DNA repair, it remains unknown whether MTA1 also participates in p53-independent DNA damage response. Here, we provide evidence that MTA1 is a p53-independent transcriptional corepressor of p21WAF1, and the underlying mechanism involves recruitment of MTA1-histone deacetylase 2 (HDAC2) complexes onto two selective regions of the p21WAF1 promoter. Accordingly, MTA1 depletion, despite its effect on p53 down-regulation, superinduces p21WAF1, increases p21WAF1 binding to proliferating cell nuclear antigen (PCNA), and decreases the nuclear accumulation of PCNA in response to ionizing radiation. In support of a p53-independent role of MTA1 in DNA damage response, we further demonstrate that induced expression of MTA1 in p53-null cells inhibits p21WAF1 promoter activity and p21WAF1 binding to PCNA. Consequently, MTA1 expression in p53-null cells results in increased induction of γH2AX foci and DNA double strand break repair, and decreased DNA damage sensitivity following ionizing radiation treatment. These findings uncover a new target of MTA1 and the existence of an additional p53-independent role of MTA1 in DNA damage response, at least in part, by modulating the p21WAF1-PCNA pathway, and thus, linking two previously unconnected NuRD complex and DNA-damage response pathways

Topics: Cell Biology
Publisher: American Society for Biochemistry and Molecular Biology
OAI identifier: oai:pubmedcentral.nih.gov:2843167
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.