Article thumbnail

Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains

By Can Kabadayi, Lucy Taylor, Auguste von Bayern and Mathias Osvath

Abstract

Overriding motor impulses instigated by salient perceptual stimuli represent a fundamental inhibitory skill. Such motor self-regulation facilitates more rational behaviour, as it brings economy into the bodily interaction with the physical and social world. It also underlies certain complex cognitive processes including decision making. Recently, MacLean et al. (MacLean et al. 2014 Proc. Natl Acad. Sci. USA 111, 2140–2148. (doi:10.1073/pnas.1323533111)) conducted a large-scale study involving 36 species, comparing motor self-regulation across taxa. They concluded that absolute brain size predicts level of performance. The great apes were most successful. Only a few of the species tested were birds. Given birds' small brain size—in absolute terms—yet flexible behaviour, their motor self-regulation calls for closer study. Corvids exhibit some of the largest relative avian brain sizes—although small in absolute measure—as well as the most flexible cognition in the animal kingdom. We therefore tested ravens, New Caledonian crows and jackdaws in the so-called cylinder task. We found performance indistinguishable from that of great apes despite the much smaller brains. We found both absolute and relative brain volume to be a reliable predictor of performance within Aves. The complex cognition of corvids is often likened to that of great apes; our results show further that they share similar fundamental cognitive mechanisms

Topics: Zoology, inhibition, motor self-regulation, corvid cognition, self-control, avian brains, Corvus
Publisher: 'The Royal Society'
Year: 2016
DOI identifier: 10.1098/rsos.160104
OAI identifier: oai:lup.lub.lu.se:b76424a7-cbeb-4ccf-95f2-d596737774da
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1098/rsos... (external link)
  • https://lup.lub.lu.se/record/b... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.