Article thumbnail

Reprogramming of stem cells in the peripheral nervous system to CNS stem cells

By Marlen Weber


The neural crest gives rise to the neurons and glial cells of the peripheral nervous system (PNS) (Bronner-Fraser and Fraser, 1989; Frank and Sanes, 1991). Self-renewing neural crest-derived stem cells (NCSCs) are present in migratory neural crest and various postmigratory locations, including peripheral ganglia (Duff et al., 1992; Morrison et al., 1999; Kruger er al., 2002). It is demonstrated that NCSCs from embryonic mouse dorsal root ganglia (DRG) are reprogrammed in neurosphere (NS) cultures in the presence of EGF and FGF. Reprogrammed NCSCs (rNCSCs) generate exclusively central nervous system (CNS) progeny, both in vitro and upon transplantation into the mouse brain (Binder et al., 2011). In this study the timing and mechanisms underlying the reprogramming were addressed. Most of the cells acquire CNS characteristics at passage 2, reaching a stable proportion of >90% of Olig2-positive cells at passage 3, which is maintained at least up to passage 10. The PNS marker p75 is completely lacking from passage 3 onwards. Furthermore, it was shown that the reprogramming does not involve a transient pluripotency state. This suggests a direct reprogramming of NCSCs to cells with CNS identity. The reprogramming leads to a stable CNS identity as shown by delayed BMP4 application. This result is in agreement with the previous observation that rNCSCs only generate CNS progeny, in particular mature myelinating oligodendrocytes, upon transplantation into embryonic, postnatal and lesioned adult mouse brains (Binder et al., 2011). Genome wide gene expression profiles of rNCSC NS demonstrates already in culture a complete switch to a (spinal cord stem cell) SCSC CNS identity. These results demonstrate a complete reprogramming of PNS progenitors to CNS identity without genetic modification and imply PNS cells as a source for stem cell-based CNS therapy. The reprogramming of NCSCs is completely blocked in the presence of BMP4 in NS cultures, as shown by the expression of neural crest markers p75 and Sox10. In addition, BMP4 NCSCs generate PNS neurons (Tuj1/Phox2b- and Peripherin/Tuj1-coexpressing cells) and Schwann cells (O4/p75-coexpressing cells). Genome wide gene expression profiles of BMP NCSCs demonstrate that BMP NCSCs express genes at high levels which are characteristic for neural crest/neural crest derivatives, mesenchymal derivatives of neural crest and perivascular pericytes/MSCs. On the other hand CNS marker genes are restricted to rNCSCs and are only expressed at background or undetectable levels in BMP NCSCs. These findings imply that the CNS versus PNS identity is controlled by antagonistic functions of FGF and BMP4. The use of rNCSCs for cell therapies requires an accessible source of these cells in the adult organism. Since the DRG is not an easily approachable tissue source, the adult mouse palate, containing NCSCs, was chosen. These results suggest that pNCSCs arise from Sox10-positive neural crest-derived stem cells, that downregulate PNS marker gene expression, such as Sox10 and p75, in NS culture. Contrary to rNCSCs, CNS marker upregulation was not observed. Notably, genome wide gene expression profiles of pNCSCs demonstrate an enrichment of genes expressed by mesenchymal derivatives and perivascular pericytes/mesenchymal stem cells. Since the cranial crest gives rise, besides PNS neural progeny and melanocytes, to mesenchymal derivatives, the results demonstrate that pNCSCs have a restricted developmental potential in comparison to rNCSCs and acquire mostly normal fates of the cranial neural crest. Taken together, the results demonstrate that rNCSCs acquire a SCSC identity in the presence of EGF and FGF and that the reprogramming can be efficiently blocked by BMP4. On the other hand, NCSCs derived from adult palate rather acquire mesenchymal fates and do not acquire a CNS identity under the conditions used

Topics: ddc:570
Year: 2016
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • https://publikationen.ub.uni-f... (external link)
  • https://publikationen.ub.uni-f... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles