Article thumbnail
Location of Repository

Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation

By Rammohan Narayanaswamy, Matthew Levy, Mark Tsechansky, Gwendolyn M. Stovall, Jeremy D. O'Connell, Jennifer Mirrielees, Andrew D. Ellington and Edward M. Marcotte

Abstract

Proteins are likely to organize into complexes that assemble and disassemble depending on cellular needs. When ≈800 yeast strains expressing GFP-tagged proteins were grown to stationary phase, a surprising number of proteins involved in intermediary metabolism and stress response were observed to form punctate cytoplasmic foci. The formation of these discrete physical structures was confirmed by immunofluorescence and mass spectrometry of untagged proteins. The purine biosynthetic enzyme Ade4-GFP formed foci in the absence of adenine, and cycling between punctate and diffuse phenotypes could be controlled by adenine subtraction and addition. Similarly, glutamine synthetase (Gln1-GFP) foci cycled reversibly in the absence and presence of glucose. The structures were neither targeted for vacuolar or autophagosome degradation nor colocalized with P bodies or major organelles. Thus, upon nutrient depletion we observe widespread protein assemblies displaying nutrient-specific formation and dissolution

Topics: Biological Sciences
Publisher: National Academy of Sciences
OAI identifier: oai:pubmedcentral.nih.gov:2691686
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.