Skip to main content
Article thumbnail
Location of Repository

Ca2+-dependent induction of TRPM2 currents in hippocampal neurons

By Michelle E Olah, Michael F Jackson, Hongbin Li, Yaël Perez, Hong-Shuo Sun, Shigeki Kiyonaka, Yasuo Mori, Michael Tymianski and John F MacDonald

Abstract

TRPM2 is a Ca2+-permeable member of the transient receptor potential melastatin family of cation channels whose activation by reactive oxygen/nitrogen species (ROS/RNS) and ADP-ribose (ADPR) is linked to cell death. While these channels are broadly expressed in the CNS, the presence of TRPM2 in neurons remains controversial and more specifically, whether they are expressed in neurons of the hippocampus is an open question. With this in mind, we examined whether functional TRPM2 channels are expressed in this neuronal population. Using a combination of molecular and biochemical approaches, we demonstrated the expression of TRPM2 transcripts and proteins in hippocampal pyramidal neurons. Whole-cell voltage-clamp recordings were subsequently carried out to assess the presence of TRPM2-mediated currents. Application of hydrogen peroxide or peroxynitrite to cultured hippocampal pyramidal neurons activated an inward current that was abolished upon removal of extracellular Ca2+, a hallmark of TRPM2 activation. When ADPR (300 μm) was included in the patch pipette, a large inward current developed but only when depolarizing voltage ramps were continuously (1/10 s) applied to the membrane. This current exhibited a linear current–voltage relationship and was sensitive to block by TRPM2 antagonists (i.e. clotrimazole, flufenamic acid and N-(p-amylcinnamoyl)anthranilic acid (ACA)). The inductive effect of voltage ramps on the ADPR-dependent current required voltage-dependent Ca2+ channels (VDCCs) and a rise in [Ca2+]i. Consistent with the need for a rise in [Ca2+]i, activation of NMDA receptors (NMDARs), which are highly permeable to Ca2+, was also permissive for current development. Importantly, given the prominent vulnerability of CA1 neurons to free-radical-induced cell death, we confirmed that, with ADPR in the pipette, a brief application of NMDA could evoke a large inward current in CA1 pyramidal neurons from hippocampal slices that was abolished by the removal of extracellular Ca2+, consistent with TRPM2 activation. Such a current was absent in interneurons of CA1 stratum radiatum. Finally, infection of cultured hippocampal neurons with a TRPM2-specific short hairpin RNA (shRNATRPM2) significantly reduced both the expression of TRPM2 and the amplitude of the ADPR-dependent current. Taken together, these results indicate that hippocampal pyramidal neurons possess functional TRPM2 channels whose activation by ADPR is functionally coupled to VDCCs and NMDARs through a rise in [Ca2+]

Topics: Neuroscience
Publisher: Blackwell Science Inc
OAI identifier: oai:pubmedcentral.nih.gov:2673769
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.