Skip to main content
Article thumbnail
Location of Repository

Density functional localized orbital corrections for transition metals

By David Rinaldo, Li Tian, Jeremy N. Harvey and Richard A. Friesner

Abstract

This paper describes the development of the B3LYP localized orbital correction model which improves the accuracy of the B3LYP thermochemical predictions for compounds containing transition metals. The development of this model employs a large data set containing 36 experimental atomic energies and 71 bond dissociation energies. B3LYP calculations were carried out on these systems with different basis sets. Based on an electronic structure analysis and physical arguments, we built a set of 10 parameters to correct atomic data and a set of 21 parameters to correct bond dissociation energies. Using the results from our biggest basis set, the model was shown to reduce the mean absolute deviation from 7.7 to 0.4 kcal∕mol for the atomic data and from 5.3 to 1.7 kcal∕mol for the bond dissociation energies. The model was also tested using a second basis set and was shown to give relatively accurate results too. The model was also able to predict an outlier in the experimental data that was further investigated with high level coupled-cluster calculations

Topics: Theoretical Methods and Algorithms
Publisher: American Institute of Physics
OAI identifier: oai:pubmedcentral.nih.gov:2673190
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.