Skip to main content
Article thumbnail
Location of Repository

Intracellular concentrations of Ca2+ modulate the strength of signal and alter the outcomes of cytotoxic T-lymphocyte antigen-4 (CD152)–CD80/CD86 interactions in CD4+ T lymphocytes

By Asma Ahmed, Sambuddho Mukherjee and Dipankar Nandi

Abstract

The costimulatory receptors CD28 and cytotoxic T-lymphocyte antigen (CTLA)-4 and their ligands, CD80 and CD86, are expressed on T lymphocytes; however, their functional roles during T cell–T cell interactions are not well known. The consequences of blocking CTLA-4–CD80/CD86 interactions on purified mouse CD4+ T cells were studied in the context of the strength of signal (SOS). CD4+ T cells were activated with phorbol 12-myristate 13-acetate (PMA) and different concentrations of a Ca2+ ionophore, Ionomycin (I), or a sarcoplasmic Ca2+ ATPase inhibitor, Thapsigargin (TG). Increasing concentrations of I or TG increased the amount of interleukin (IL)-2, reflecting the conversion of a low to a high SOS. During activation with PMA and low amounts of I, intracellular concentrations of calcium ([Ca2+]i) were greatly reduced upon CTLA-4–CD80/CD86 blockade. Further experiments demonstrated that CTLA-4–CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of I or TG (high SOS) but the opposite occurred with PMA and low amounts of I or TG (low SOS). These results were confirmed by surface T-cell receptor (TCR)–CD3 signalling using a low SOS, for example soluble anti-CD3, or a high SOS, for example plate-bound anti-CD3. Also, CTLA-4–CD80/CD86 interactions enhanced the generation of reactive oxygen species (ROS). Studies with catalase revealed that H2O2 was required for IL-2 production and cell cycle progression during activation with a low SOS. However, the high amounts of ROS produced during activation with a high SOS reduced cell cycle progression. Taken together, these results indicate that [Ca2+]i and ROS play important roles in the modulation of T-cell responses by CTLA-4–CD80/CD86 interactions

Topics: Original Article
Publisher: Blackwell Science Inc
OAI identifier: oai:pubmedcentral.nih.gov:2669817
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.