Article thumbnail
Location of Repository

SleC Is Essential for Cortex Peptidoglycan Hydrolysis during Germination of Spores of the Pathogenic Bacterium Clostridium perfringens▿ †

By Daniel Paredes-Sabja, Peter Setlow and Mahfuzur R. Sarker

Abstract

Clostridial spore germination requires degradation of the spore's peptidoglycan (PG) cortex by cortex-lytic enzymes (CLEs), and two Clostridium perfringens CLEs, SleC and SleM, degrade cortex PG in vitro. We now find that only SleC is essential for cortex hydrolysis and viability of C. perfringens spores. C. perfringens sleC spores did not germinate completely with nutrients, KCl, or a 1:1 chelate of Ca2+ and dipicolinic acid (Ca-DPA), and the colony-forming efficiency of sleC spores was 103-fold lower than that of wild-type spores. However, sleC spores incubated with various germinants released most of their DPA, although slower than wild-type or sleM spores, and DPA release from sleC sleM spores was very slow. In contrast, germination and viability of sleM spores were similar to that of wild-type spores, although sleC sleM spores had 105-fold-lower viability. These results allow the following conclusions about C. perfringens spore germination: (i) SleC is essential for cortex hydrolysis; (ii) although SleM can degrade cortex PG in vitro, this enzyme is not essential; (iii) action of SleC alone or with SleM can accelerate DPA release; and (iv) Ca-DPA does not trigger spore germination by activation of CLEs

Topics: Genetics and Molecular Biology
Publisher: American Society for Microbiology (ASM)
OAI identifier: oai:pubmedcentral.nih.gov:2668406
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.