Skip to main content
Article thumbnail
Location of Repository

The Distribution of Mitochondrial DNA Heteroplasmy Due to Random Genetic Drift

By Passorn Wonnapinij, Patrick F. Chinnery and David C. Samuels


Cells containing pathogenic mutations in mitochondrial DNA (mtDNA) generally also contain the wild-type mtDNA, a condition called heteroplasmy. The amount of mutant mtDNA in a cell, called the heteroplasmy level, is an important factor in determining the amount of mitochondrial dysfunction and therefore the disease severity. mtDNA is inherited maternally, and there are large random shifts in heteroplasmy level between mother and offspring. Understanding the distribution in heteroplasmy levels across a group of offspring is an important step in understanding the inheritance of diseases caused by mtDNA mutations. Previously, our understanding of the heteroplasmy distribution has been limited to just the mean and variance of the distribution. Here we give equations, adapted from the work of Kimura on random genetic drift, for the full mtDNA heteroplasmy distribution. We describe how to use the Kimura distribution in mitochondrial genetics, and we test the Kimura distribution against human, mouse, and Drosophila data sets

Topics: Article
Publisher: Elsevier
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.