Skip to main content
Article thumbnail
Location of Repository

Hepatitis C Virus Nonstructural 4B Protein Modulates Sterol Regulatory Element-binding Protein Signaling via the AKT Pathway*

By Chul-Yong Park, Hyun-Jeong Jun, Takaji Wakita, Jae Hun Cheong and Soon B. Hwang


Hepatitis C virus (HCV) infection is often associated with hepatic steatosis and yet the molecular mechanisms of HCV-associated steatosis are poorly understood. Because sterol regulatory element-binding proteins (SREBPs) are the major transcriptional factors in lipogenic gene expression including fatty acid synthase (FAS), we examined the effects of HCV nonstructural proteins on the signaling pathways of SREBP. In this study, we demonstrated that HCV nonstructural 4B (NS4B) protein increased the transcriptional activities of SREBPs. We also showed that HCV NS4B enhanced the protein expression levels of SREBPs and FAS. This was further confirmed in the context of viral RNA replication and HCV infection. The up-regulation of both SREBP and FAS by NS4B protein required phosphatidylinositol 3-kinase activity. We also demonstrated that NS4B protein induced a lipid accumulation in hepatoma cells. In addition, NS4B protein synergistically elevated the transcriptional activity of HCV core-mediated SREBP-1. These results strongly suggest that NS4B may play an important role in HCV-associated liver pathogenesis by modulating the SREBP signaling pathway

Topics: Mechanisms of Signal Transduction
Publisher: American Society for Biochemistry and Molecular Biology
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.