Article thumbnail

Graph polynomials from principal pivoting

By Roland Glantz and Marcello Pelillo


AbstractThe recursive computation of the interlace polynomial introduced by Arratia, Bollobás and Sorkin is defined in terms of a new pivoting operation on undirected simple graphs. In this paper, we interpret the new pivoting operation on graphs in terms of standard pivoting (on matrices). Specifically, we show that, up to swapping vertex labels, Arratia et al.'s pivoting operation on a graph is equivalent to a principal pivot transform on the graph's adjacency matrix, provided that all computations are performed in the Galois field F2. Principal pivoting on adjacency matrices over F2 has a natural counterpart on isotropic systems. Thus, our view of the interlace polynomial is closely related to the one by Aigner and van der Holst.The observations that adjacency matrices of undirected simple graphs are skew-symmetric in F2 and that principal pivoting preserves skew-symmetry in all fields suggest to extend Arratia et al.'s pivoting operation to fields other than F2. Thus, the interlace polynomial extends to polynomials on gain graphs, namely bidirected edge-weighted graphs whereby reversed edges carry non-zero weights that differ only by their sign. Extending a proof by Aigner and van der Holst, we show that the extended interlace polynomial can be represented in a non-recursive form analogous to the non-recursive form of the original interlace polynomial, i.e., the Martin polynomial.For infinite fields it is shown that the extended interlace polynomial does not depend on the (non-zero) gains, as long as they obey a non-singularity condition. These gain graphs are all supported by a single undirected simple graph. Thus, a new graph polynomial is defined for undirected simple graphs. The recursive computation of the new polynomial can be done such that all ends of the recursion correspond to independent sets. Moreover, its degree equals the independence number. However, the new graph polynomial is different from the independence polynomial

Publisher: Elsevier B.V.
Year: 2006
DOI identifier: 10.1016/j.disc.2006.06.003
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.