Skip to main content
Article thumbnail
Location of Repository

Mode of Action of Ranbezolid against Staphylococci and Structural Modeling Studies of Its Interaction with Ribosomes▿

By Vandana Kalia, Rajni Miglani, Kedar P. Purnapatre, Tarun Mathur, Smita Singhal, Seema Khan, Sreedhara R. Voleti, Dilip J. Upadhyay, Kulvinder Singh Saini, Ashok Rattan and V. Samuel Raj

Abstract

Oxazolidinones are known to inhibit protein biosynthesis and act against a wide spectrum of gram-positive bacteria. A new investigational oxazolidinone, ranbezolid, inhibited bacterial protein synthesis in Staphylococcus aureus and Staphylococcus epidermidis. In S. epidermidis, ranbezolid showed inhibition of cell wall and lipid synthesis and a dose-dependent effect on membrane integrity. A kill-kinetics study showed that ranbezolid was bactericidal against S. epidermidis. In vitro translation of the luciferase gene done using bacterial and mammalian ribosomes indicated that ranbezolid specifically inhibited the bacterial ribosome. Molecular modeling studies revealed that both linezolid and ranbezolid fit in similar manners the active site of ribosomes, with total scores, i.e., theoretical binding affinities after consensus, of 5.2 and 6.9, respectively. The nitrofuran ring in ranbezolid is extended toward C2507, G2583, and U2584, and the nitro group forms a hydrogen bond from the base of G2583. The interaction of ranbezolid with the bacterial ribosomes clearly helps to elucidate its potent activity against the target pathogen

Topics: Pharmacology
Publisher: American Society for Microbiology (ASM)
OAI identifier: oai:pubmedcentral.nih.gov:2663096
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.