Skip to main content
Article thumbnail
Location of Repository

Selective inhibition of RANK blocks osteoclast maturation and function and prevents bone loss in mice

By Hyunsoo Kim, Han Kyoung Choi, Ji Hye Shin, Kyung Hee Kim, Ji Young Huh, Seung Ah Lee, Chang-Yong Ko, Han-Sung Kim, Hong-In Shin, Hwa Jeong Lee, Daewon Jeong, Nacksung Kim, Yongwon Choi and Soo Young Lee

Abstract

Regulation of the formation and function of bone-resorbing osteoclasts (OCs) is a key to understanding the pathogenesis of skeletal disorders. Gene-targeting studies have shown that the RANK signaling pathway plays a critical role in OC differentiation and function. Although pharmaceutical blockade of RANK may be a viable strategy for preventing bone destruction, RANK is implicated in multiple biological processes. Recently, a cytoplasmic motif of RANK was identified that may be specifically involved in OC differentiation. Here, we developed a cell-permeable inhibitor termed the RANK receptor inhibitor (RRI), which targets this motif. The RRI peptide blocked RANKL-induced OC formation from murine bone marrow–derived macrophages. Furthermore, RRI inhibited the resorptive function of OCs and induced OC apoptosis. Treatment with the peptide impaired downstream signaling of RANK linked to Vav3, Rac1, and Cdc42 and resulted in disruptions of the actin cytoskeleton in differentiated OCs. In addition, RRI blocked inflammation-induced bone destruction and protected against ovariectomy-induced bone loss in mice. These data may be useful in the development of selective therapeutic agents for the treatment of osteoporosis and other bone diseases

Topics: Research Article
Publisher: American Society for Clinical Investigation
OAI identifier: oai:pubmedcentral.nih.gov:2662555
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.