Skip to main content
Article thumbnail
Location of Repository

Internal Core Protein Cleavage Leaves the Hepatitis B Virus Capsid Intact and Enhances Its Capacity for Surface Display of Heterologous Whole Chain Proteins*

By Andreas Walker, Claudia Skamel, Jolanta Vorreiter and Michael Nassal

Abstract

Virus capsids find increasing use as nanoparticulate platforms for the surface display of heterologous ligands, including as multivalent vaccine carriers. Presentation on the icosahedral hepatitis B virus capsid (HBcAg) is known to strongly enhance immunogenicity of foreign sequences, most efficiently if they are inserted into the dominant c/e1 B cell epitope, a surface-exposed loop in the center of the constituent core protein primary sequence. Even some complete proteins were successfully inserted but others, e.g. the outer surface protein A (OspA) of the Lyme disease agent Borrelia burgdorferi, impaired formation of capsid-like particles (CLPs). This difference can be rationalized by the requirement for the termini of the insert to fit into the predetermined geometry of the two acceptor sites in the carrier. We reasoned that cleavage of one of the two bonds connecting insert and carrier should relieve these constraints, provided the cleaved protein fragments remain competent to support the particle structure. Indeed, HBcAg CLPs containing a recognition site for tobacco etch virus (TEV) protease in the c/e1 loop remained intact after cleavage, as did CLPs carrying a 65-residue peptide insertion. Most importantly, in situ cleavage of a core-OspA fusion protein by coexpressed TEV protease strongly enhanced CLP formation compared with the uncleaved protein. These data attest to the high structural stability of the HBcAg CLP and they significantly widen its applicability as a carrier for heterologous proteins. This approach should be adaptable to any protein-based particle with surface-exposed yet sequence-internal loops

Topics: Protein Structure and Folding
Publisher: American Society for Biochemistry and Molecular Biology
OAI identifier: oai:pubmedcentral.nih.gov:2662272
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.