Skip to main content
Article thumbnail
Location of Repository

Cellular localization of mitochondria contributes to Kv channel-mediated regulation of cellular excitability in pulmonary but not mesenteric circulation

By Amy L. Firth, Dmitri V. Gordienko, Kathryn H. Yuill and Sergey V. Smirnov

Abstract

Mitochondria are proposed to be a major oxygen sensor in hypoxic pulmonary vasoconstriction (HPV), a unique response of the pulmonary circulation to low oxygen tension. Mitochondrial factors including reactive oxygen species, cytochrome c, ATP, and magnesium are potent modulators of voltage-gated K+ (Kv) channels in the plasmalemmal membrane of pulmonary arterial (PA) smooth muscle cells (PASMCs). Mitochondria have also been found close to the plasmalemmal membrane in rabbit main PA smooth muscle sections. Therefore, we hypothesized that differences in mitochondria localization in rat PASMCs and systemic mesenteric arterial smooth muscle cells (MASMCs) may contribute to the divergent oxygen sensitivity in the two different circulations. Cellular localization of mitochondria was compared with immunofluorescent labeling, and differences in functional coupling between mitochondria and Kv channels was evaluated with the patch-clamp technique and specific mitochondrial inhibitors antimycin A (acting at complex III of the mitochondrial electron transport chain) and oligomycin A (which inhibits the ATP synthase). It was found that mitochondria were located significantly closer to the plasmalemmal membrane in PASMCs compared with MASMCs. Consistent with these findings, the effects of the mitochondrial inhibitors on Kv current (IKv) were significantly more potent in PASMCs than in MASMCs. The cytoskeletal disruptor cytochalasin B (10 μM) also altered mitochondrial distribution in PASMCs and significantly attenuated the effect of antimycin A on the voltage-dependent parameters of IKv. These findings suggest a greater structural and functional coupling between mitochondria and Kv channels specifically in PASMCs, which could contribute to the regulation of PA excitability in HPV

Topics: Articles
Publisher: American Physiological Society
OAI identifier: oai:pubmedcentral.nih.gov:2660209
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.