Skip to main content
Article thumbnail
Location of Repository

Molecular Mechanisms of Yeast Cell Wall Glucan Remodeling*

By Ramon Hurtado-Guerrero, Alexander W. Schüttelkopf, Isabelle Mouyna, Adel F. M. Ibrahim, Sharon Shepherd, Thierry Fontaine, Jean-Paul Latgé and Daan M. F. van Aalten

Abstract

Yeast cell wall remodeling is controlled by the equilibrium between glycoside hydrolases, glycosyltransferases, and transglycosylases. Family 72 glycoside hydrolases (GH72) are ubiquitous in fungal organisms and are known to possess significant transglycosylase activity, producing elongated β(1–3) glucan chains. However, the molecular mechanisms that control the balance between hydrolysis and transglycosylation in these enzymes are not understood. Here we present the first crystal structure of a glucan transglycosylase, Saccharomyces cerevisiae Gas2 (ScGas2), revealing a multidomain fold, with a (βα)8 catalytic core and a separate glucan binding domain with an elongated, conserved glucan binding groove. Structures of ScGas2 complexes with different β-glucan substrate/product oligosaccharides provide “snapshots” of substrate binding and hydrolysis/transglycosylation giving the first insights into the mechanisms these enzymes employ to drive β(1–3) glucan elongation. Together with mutagenesis and analysis of reaction products, the structures suggest a “base occlusion” mechanism through which these enzymes protect the covalent protein-enzyme intermediate from a water nucleophile, thus controlling the balance between hydrolysis and transglycosylation and driving the elongation of β(1–3) glucan chains in the yeast cell wall

Topics: Glycobiology and Extracellular Matrices
Publisher: American Society for Biochemistry and Molecular Biology
OAI identifier: oai:pubmedcentral.nih.gov:2659204
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.