Skip to main content
Article thumbnail
Location of Repository

Using UMLS Concept Unique Identifiers (CUIs) for Word Sense Disambiguation in the Biomedical Domain

By Bridget T. McInnes, Ted Pedersen and John Carlis

Abstract

This paper explores the use of Concept Unique Identifiers (CUIs) as assigned by MetaMap as features for a supervised learning approach to word sense disambiguation of biomedical text. We compare the use of CUIs that occur in abstracts containing an instance of the target word with using the CUIs that occur in sentences containing an instance of the target word. We also experiment with frequency cutoffs for determining which CUIs should be included as features. We find that a Naive Bayesian classifier where the features represent CUIs that occur two or more times in abstracts containing the target word attains accuracy 9% greater than Leroy and Rindflesch’s approach, which includes features based on semantic types assigned by MetaMap. Our results are comparable to those of Joshi, et. al. and Liu, et. al., who use feature sets that do not contain biomedical information

Topics: Articles
Publisher: American Medical Informatics Association
OAI identifier: oai:pubmedcentral.nih.gov:2655788
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.