Article thumbnail

Study of mechanisms of electric field-induced DNA transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields

By T.D. Xie and T.Y. Tsong


Electroporation for DNA transfection generally uses short intense electric pulses (direct current of kilovolts per centimeter, microseconds to milliseconds), or intense dc shifted radio-frequency oscillating fields. These methods, while remarkably effective, often cause death of certain cell populations. Previously it was shown that a completely reversible, high ionic permeation state of membranes could be induced by a low-frequency alternating electric field (ac) with a strength one-tenth, or less, of the critical breakdown voltage of the cell membrane (Teissie, J., and T. Y. Tsong. 1981. J. Physiol. (Paris). 77:1043–1053). We report the transfection of E. coli (JM105) by plasmid PUC18 DNA, which carries an ampicillin-resistance gene, using low-amplitude, low-frequency ac fields. E. coli transformants confer the ampicillin resistance and the efficiency of the transfection can be conveniently assayed by counting colonies in a selection medium containing ampicillin. For the range of ac fields employed (peak-to-peak amplitude 50–200 V/cm, frequency 0.1 Hz-1 MHz, duration 1–100 s), 100% of the E. coli survived the electric field treatment. Transfection efficiencies varied with field strength and frequency, and as high as 1 x 10(5)/micrograms DNA was obtained with a 200 V/cm square wave, 1 Hz ac field, 30 s exposure time, when the DNA/cell ratio was 50–75. Control samples gave a background transfection of much less than 10/micrograms DNA. With a square wave ac field, the transfection efficiency showed a frequency window: the optimal frequency was 1 Hz with a 200 V/cm field, and was approximately 0.1 Hz with a 50 V/cm field.(ABSTRACT TRUNCATED AT 250 WORDS

Publisher: The Biophysical Society. Published by Elsevier Inc.
Year: 1990
DOI identifier: 10.1016/S0006-3495(90)82434-6
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.