research

Cerebellar ataxia and functional genomics: Identifying the routes to cerebellar neurodegeneration

Abstract

AbstractCerebellar ataxias are progressive neurodegenerative disorders characterized by atrophy of the cerebellum leading to motor dysfunction, balance problems, and limb and gait ataxia. These include among others, the dominantly inherited spinocerebellar ataxias, recessive cerebellar ataxias such as Friedreich's ataxia, and X-linked cerebellar ataxias. Since all cerebellar ataxias display considerable overlap in their disease phenotypes, common pathological pathways must underlie the selective cerebellar neurodegeneration. Therefore, it is important to identify the molecular mechanisms and routes to neurodegeneration that cause cerebellar ataxia. In this review, we discuss the use of functional genomic approaches including whole-exome sequencing, genome-wide gene expression profiling, miRNA profiling, epigenetic profiling, and genetic modifier screens to reveal the underlying pathogenesis of various cerebellar ataxias. These approaches have resulted in the identification of many disease genes, modifier genes, and biomarkers correlating with specific stages of the disease. This article is part of a Special Issue entitled: From Genome to Function

Similar works

Full text

thumbnail-image
Last time updated on 06/05/2017

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.