AbstractGiven a simple graph G, by an L(p,q)-labeling of G we mean a function c that assigns nonnegative integers to its vertices in such a way that if two vertices u, v are adjacent then |c(u)−c(v)|≥p, and if they are at distance 2 then |c(u)−c(v)|≥q. The L(p,q)-labeling problem can be defined as follows: given a graph G and integer t, determine whether there exists an L(p,q)-labeling c of G such that c(V)⊆{0,1,…,t}. In the paper we show that the problem is NP-complete even when restricted to bipartite planar graphs of small maximum degree and for relatively small values of t. More precisely, we prove that: (1)if p<3q then the problem is NP-complete for bipartite planar graphs of maximum degree Δ≤3 and t=p+max{2q,p};(2)if p=3q then the problem is NP-complete for bipartite planar graphs of maximum degree Δ≤4 and t=6q;(3)if p>3q then the problem is NP-complete for bipartite planar graphs of maximum degree Δ≤4 and t=p+5q.In particular, these results imply that the L(2,1)-labeling problem in planar graphs is NP-complete for t=4, and that the L(p,q)-labeling problem in graphs of maximum degree Δ≤4 is NP-complete for all values of p and q, thus answering two well-known open questions

Publisher: Elsevier B.V.

Year: 2009

DOI identifier: 10.1016/j.disc.2008.09.028

OAI identifier:

Provided by:
Elsevier - Publisher Connector