Article thumbnail

Neurogenetic networks for startle-induced locomotion in Drosophila melanogaster

By Akihiko Yamamoto, Liesbeth Zwarts, Patrick Callaerts, Koenraad Norga, Trudy F. C. Mackay and Robert R. H. Anholt


Understanding how the genome empowers the nervous system to express behaviors remains a critical challenge in behavioral genetics. The startle response is an attractive behavioral model for studies on the relationship between genes, brain, and behavior, as the ability to respond rapidly to harmful changes in the environment is a universal survival trait. Drosophila melanogaster provides a powerful system in which genetic studies on individuals with controlled genetic backgrounds and reared under controlled environmental conditions can be combined with neuroanatomical studies to analyze behaviors. In a screen of 720 lines of D. melanogaster, carrying single P[GT1] transposon insertions, we found 267 lines that showed significant changes in startle-induced locomotor behavior. Excision of the transposon reversed this effect in five lines out of six tested. We infer that most of the 267 lines show mutant effects on startle-induced locomotion that are caused by the transposon insertions. We selected a subset of 15 insertions in the same genetic background in autosomal genes with strong mutant effects and crossed them to generate all 105 possible nonreciprocal double heterozygotes. These hybrids revealed an extensive network of epistatic interactions on the behavioral trait. In addition, we observed changes in neuroanatomy that were caused by these 15 mutations, individually and in their double heterozygotes. We find that behavioral and neuroanatomical phenotypes are determined by a common set of genes that are organized as partially overlapping genetic networks

Topics: Biological Sciences
Publisher: National Academy of Sciences
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.