Skip to main content
Article thumbnail
Location of Repository

GALAXY DISKS DO NOT NEED TO SURVIVE IN THE Lambda CDM PARADIGM: THE GALAXY MERGER RATE OUT TO z similar to 1.5 FROM MORPHO-KINEMATIC DATA

By M. Puech, F. Hammer, P. F. Hopkins, E. Athanassoula, H. Flores, M. Rodrigues, J. L. Wang and Y. B. Yang

Abstract

International audienceAbout two-thirds of present-day, large galaxies are spirals such as the Milky Way or Andromeda, but the way their thin rotating disks formed remains uncertain. Observations have revealed that half of their progenitors, six billion years ago, had peculiar morphologies and/or kinematics, which exclude them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of similar mass, are found to be the likeliest driver for such strong peculiarities. However, thin disks are fragile and easily destroyed by such violent collisions, which creates a critical tension between the observed fraction of thin disks and their survival within the Lambda CDM paradigm. Here, we show that the observed high occurrence of mergers among their progenitors is only apparent and is resolved when using morpho-kinematic observations that are sensitive to all the phases of the merging process. This provides an original way of narrowing down observational estimates of the galaxy merger rate and leads to a perfect match with predictions by state-of-the-art Lambda CDM semi-empirical models with no particular fine-tuning needed. These results imply that half of local thin disks do not survive but are actually rebuilt after a gas-rich major merger occurring in the past nine billion years, i.e., two-thirds of the lifetime of the universe. This emphasizes the need to study how thin disks can form in halos with a more active merger history than previously considered and to investigate what is the origin of the gas reservoir from which local disks would reform

Topics: [ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph]
Publisher: American Astronomical Society
Year: 2012
DOI identifier: 10.1088/0004-637X
OAI identifier: oai:HAL:hal-01442417v1
Provided by: Hal-Diderot
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.