Location of Repository

We consider the fragmentation equation $\dfrac{\partial}{\partial t}f (t, x) = −B(x)f (t, x) + \int_{ y=x}^{ y=\infty} k(y, x)B(y)f (t, y)dy,$ and address the question of estimating the fragmentation parameters-i.e. the division rate $B(x)$ and the fragmentation kernel $k(y, x)$-from measurements of the size distribution $f (t, ·)$ at various times. This is a natural question for any application where the sizes of the particles are measured experimentally whereas the fragmentation rates are unknown, see for instance (Xue, Radford, Biophys. Journal, 2013) for amyloid fibril breakage. Under the assumption of a polynomial division rate $B(x) = \alpha x^{\gamma}$ and a self-similar fragmentation kernel $k(y, x) = \frac{1}{y} k_0 (x/ y)$, we use the asymptotic behaviour proved in (Escobedo, Mischler, Rodriguez-Ricard, Ann. IHP, 2004) to obtain uniqueness of the triplet $(\alpha, \gamma, k _0)$ and a representation formula for $k_0$. To invert this formula, one of the delicate points is to prove that the Mellin transform of the asymptotic profile never vanishes, what we do through the Wiener-Hopf representation

Topics:
Size-structured partial differential equation, Fragmen- tation equation, Mellin transform, Functional equation, Non-linear inverse problem, [
MATH
]
Mathematics [math]

Publisher: HAL CCSD

Year: 2017

OAI identifier:
oai:HAL:hal-01501811v1

Provided by:
Hal-Diderot

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.