Copper- and iron-induced injuries in roots and rhizomes of reed (Phragmites australis)


AbstractAbout 1 mg/g dw Cu2+ and 8 mg/g dw Fe2+ were found in roots of reed plants when fed with heavy metal concentrations of 100 μM Cu2+ and 10 mM Fe2+ under hypoxia. Roots seemed to act as a kind of filter since the amounts in rhizomes were only 0.06 mg Cu2+/g dw and 2 mg Fe2+/g dw. Increased contents of both ions reduced posthypoxic respiration capacity by 40–50% and also the sum of adenylates (ATP, ADP, AMP) by the same order of magnitude, although energy charge values remained above 0.85 in Cu2+ and 0.79 in Fe2+ treatments. Energy metabolism of rhizomes was not affected. Copper and iron contents of roots as well as of rhizomes were high enough to induce oxidative stress when roots were fed with 40 μM Cu2+ and 1 mM Fe2+, respectively.From our results we conclude that increased, but environmentally attainable, amounts of copper and reduced iron ions disturb root energy metabolism, and therefore root functioning and development. Latent injuries, based on oxidative stress, may be harmful for roots and rhizomes under long term exposure

Similar works

Full text


Elsevier - Publisher Connector

Provided a free PDF
Last time updated on 4/28/2017View original full text link

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.