Mini-Maximizers for Reaction-Diffusion Systems with Skew-Gradient Structure


AbstractA reaction-diffusion system with skew-gradient structure is a sort of activator-inhibitor system that consists of two gradient systems coupled in a skew-symmetric way. Any steady state of such a system corresponds to a critical point of some functional. The aim of this paper is to study the relation between a stability property as a steady state of the reaction-diffusion system and a mini-maximizing property as a critical point of the functional. It is shown that a steady state of the skew-gradient system is stable regardless of time constants if and only if it is a mini-maximizer of the functional. It is also shown that the mini-maximizing property is closely related with the diffusion-induced instability. Moreover, by using the property that any mini-maximizer on a convex domain is spatially homogeneous, quite a general instability criterion is obtained for some activator-inhibitor systems. These results are applied to the diffusive FitzHugh–Nagumo system and the Gierer–Meinhardt system

Similar works

Full text


Elsevier - Publisher Connector

Provided a free PDF
Last time updated on 4/28/2017View original full text link

This paper was published in Elsevier - Publisher Connector .

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.