Dual-channel active contour model for megakaryocytic cell segmentation in bone marrow trephine histology images


Assessment of morphological features of megakaryocytes (special kind of cells) in bone marrow trephine biopsies play an important role in the classification of different subtypes of Philadelphia-chromosome-negative myeloproliferative neoplasms (Ph-negative MPNs). In order to aid hematopathologists in the study of megakaryocytes, we propose a novel framework that can efficiently delineate the nuclei and cytoplasm of these cells in digitized images of bone marrow trephine biopsies. The framework first employs a supervised machine learning approach that utilizes color and texture features to delineate megakaryocytic nuclei. It then employs a novel dual-channel active contour model to delineate the boundary of megakaryocytic cytoplasm by using different deconvolved stain channels. Compared to other recent models, the proposed framework achieves accurate results for both megakaryocytic nuclear and cytoplasmic delineation

Similar works

Full text


Warwick Research Archives Portal Repository

Provided a free PDF time updated on 4/19/2017View original full text link

This paper was published in Warwick Research Archives Portal Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.