Skip to main content
Article thumbnail
Location of Repository

Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10

By Jarl A Anmarkrud, Oddmund Kleven, Lutz Bachmann and Jan T Lifjeld
Topics: Research Article
Publisher: BioMed Central
OAI identifier: oai:pubmedcentral.nih.gov:2396632
Provided by: PubMed Central

Suggested articles

Citations

  1. (2006). A predicted microsatellite map of the passerine genome based on chicken-passerine sequence similarity. Mol Ecol
  2. (1970). An introduction to population genetics theory.
  3. (1996). Clusters of identical new mutation in the evolutionary landscape. Genetica
  4. (1997). Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. Mol Biol Evol
  5. (1964). Crow JF: The number of alleles that can be maintained in a finite population. Genetics
  6. (1996). Ellegren H: Directional evolution in germline microsatellite mutations. Nat Genet
  7. (2002). Ellegren H: Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Res
  8. (2004). Ellegren H: Individual variation in microsatellite mutation rate in barn swallows. Mutat Res
  9. (1996). Ellegren H: New microsatellites from the pied flycatcher Ficedula hypoleuca and the swallow Hirundo rustica genomes. Hereditas
  10. (2005). Emerson BC: Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy. Mol Ecol
  11. (1994). Freimer NB: Mutational processes of simple-sequence repeat loci in human populations. P r o c N a t l A c a d S c i
  12. (1989). Fuchs RP: Z-DNA-forming sequences are spontaneous deletion hot spots.
  13. (2006). Gemmell NJ: The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays
  14. (1987). Gutman GA: Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol
  15. (2000). Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet
  16. (1998). High mutation rate of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Mol Biol Evol
  17. (2002). Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Mol Ecol
  18. (2002). Human mutation-blame (mostly) men.
  19. (1989). Hypervariabflity of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res
  20. (2000). KP: Complex mutations in a high proportion of microsatellite loci from the protozoan parasite Plasmodium falciparum. Mol Ecol
  21. (2005). Lifjeld JT: Extrapair mating between relatives in barn swallow: a role for kin selection? Biol Lett
  22. (1999). Microsatellites and other simple sequences: genomic context and mutational mechanisms.
  23. (1996). Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem
  24. (2002). Mismatch repair-driven mutational bias
  25. (2002). Mutation rate and specificity analysis of tetranucleotide microsatellite DNA alleles in somatic human cells. Mol Carcinog
  26. (2002). Nevo E: Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol
  27. (1997). Petes TD: Microsatellite instability in yeast: dependence on the length of the microsatellite. Genetics
  28. RA: Sequence-dependent effect of interruptions on microsatellite mutation rate in mismatch repair-deficient human cells. Mutat Res
  29. (2005). RA: Variation in efficiency of DNA mismatch repair at different sites in the yeast genome. Proc Natl Acad Sci USA
  30. (1997). Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci USA
  31. (2006). Repeat expansion in spinocerebellar ataxia type 17 alleles of the TATA-box binding protein gene: an evolutionary approach.
  32. (2007). RJ: Female tree swallows (Tachycineta bicolor) increase offspring heterozygosity through extrapair mating. Behav Ecol Sociobiol
  33. (1998). RR: Interruptions in the triplet repeats of SCA1 and FRAXA reduce the propensity and complexity of slipped strand DNA (S-DNA) formation. Biochemistry
  34. (1999). Schlötterer C: Microsatellites: Evolution and applications.
  35. (2003). Sibly RM: Likelihood-based estimation of microsatellite mutation rates. Genetics
  36. (2007). Simple repeat evolution includes dramatic primary sequence changes that conserve folding potential. Biochem Biophys Res Commun
  37. (1978). Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA
  38. (1992). Tautz D: Slippage synthesis of simple sequence DNA. Nucleic Acids Res
  39. (2003). The relationship between microsatellite slippage mutation rate and the number of repeat units.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.