Article thumbnail

The topology of plasminogen binding and activation on the surface of human breast cancer cells

By N M Andronicos and M Ranson


The urokinase-dependent activation of plasminogen by breast cancer cells plays an important role in metastasis. We have previously shown that the metastatic breast cancer cell line MDA-MB-231 over-expresses urokinase and binds and efficiently activates plasminogen at the cell surface compared to non-metastatic cells. The aim of this study was to further characterise plasminogen binding and determine the topology of cell surface-bound plasminogen in terms of its potential for activation. The lysine-dependent binding of plasminogen at 4°C to MDA-MB-231 cells was stable and resulted in an activation-susceptible conformation of plasminogen. Topologically, a fraction of bound plasminogen was co-localised with urokinase on the surfaces of MDA-MB-231 cells where it could be activated to plasmin. At 37°C plasmin was rapidly lost from the cell surface. Apart from actin, other candidate plasminogen receptors were either not expressed or did not co-localise with plasminogen at the cell surface. Thus, based on co-localisation with urokinase, plasminogen binding is partitioned into two functional pools on the surface of MDA-MB-231 cells. In conclusion, these results shed further light on the functional organisation of the plasminogen activation cascade on the surface of a metastatic cancer cell. © 2001 Cancer Research Campaign

Topics: Regular Article
Publisher: Nature Publishing Group
OAI identifier:
Provided by: PubMed Central

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles


  1. (1986). Binding of single-chain prourokinase to the urokinase receptor of human U937 cells.
  2. (1997). The human ENO1 gene product (recombinant human α -enolase) displays characteristics required for a plasminogen binding protein. Biochim Biophys Acta 1337: 27–39 Andronicos NM,