Skip to main content
Article thumbnail
Location of Repository

Continuous dehydration of cavansite under dynamic conditions: an in situ synchrotron powder-diffraction study

By Martucci Annalisa, Elisa Rodeghero and Giuseppe Cruciani


The dehydration dynamics of cavansite, Ca(VO)(Si4O10)center dot 4H(2)O was studied by time-resolved in situ synchrotron powder diffraction between 298 and 900 K. The crystal-structure evolution was continuously monitored through twenty Rietveld structure refinements (Pnma space group) in the 298-810 K range whereupon cavansite turned amorphous without any precursor to a polymorphic phase transition to pentagonite. The results obtained from the series of time-resolved Rietveld refinements highlight the out-of-equilibrium effects that govern dehydration of cavansite powders under dynamic conditions. While confirming the general picture of cavansite dehydration, as previously reported by static single-crystal work, this dynamic study revealed an important transient phenomenon, namely the cell-volume expansion caused by framework relaxation resulting from breakdown of the hydrogen bonding network during the initial heating stages. We also documented that the channels formed by elliptical eight-membered tetrahedral rings of cavansite, when heated under the typical dynamic conditions of an industrial process, undergo a series of short-lived "pore-mouth breathing motions" which could be exploited for fine tuning of gas diffusion paths in possible applications of synthetic analogues of these vanadosilicates

Topics: cavansite, dehydration dynamics, in situ synchrotron powder diffraction, transient phenomena, pore-mouth breathing motion, microporous structure, vanadosilicate
Year: 2016
DOI identifier: 10.1127/ejm
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.