Article thumbnail

Nonparametric sparse hierarchical models describe v1 fmri responses to natural images

By Pradeep Ravikumar, Vincent Q. Vu, Bin Yu, Thomas Naselaris, Kendrick N. Kay and Jack L. Gallant

Abstract

We propose a novel hierarchical, nonlinear model that predicts brain activity in area V1 evoked by natural images. In the study reported here brain activity was measured by means of functional magnetic resonance imaging (fMRI), a nonin-vasive technique that provides an indirect measure of neural activity pooled over a small volume ( ≈ 2mm cube) of brain tissue. Our model, which we call the V-SPAM model, is based on the reasonable assumption that fMRI measurements reflect the (possibly nonlinearly) pooled, rectified output of a large population of simple and complex cells in V1. It has a hierarchical filtering stage that consists of three layers: model simple cells, model complex cells, and a third layer in which the complex cells are linearly pooled (called “pooled-complex ” cells). The pooling stage then obtains the measured fMRI signals as a sparse additive model (SpAM) in which a sparse nonparametric (nonlinear) combination of model com-plex cell and model pooled-complex cell outputs are summed. Our results show that the V-SPAM model predicts fMRI responses evoked by natural images bet-ter than a benchmark model that only provides linear pooling of model complex cells. Furthermore, the spatial receptive fields, frequency tuning and orientation tuning curves of the V-SPAM model estimated for each voxel appears to be con-sistent with the known properties of V1, and with previous analyses of this data set. A visualization procedure applied to the V-SPAM model shows that most of the nonlinear pooling consists of simple compressive or saturating nonlinearities.

Year: 2016
OAI identifier: oai:CiteSeerX.psu:10.1.1.1018.1690
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://papers.nips.cc/paper/34... (external link)
  • http://papers.nips.cc/paper/34... (external link)
  • http://citeseerx.ist.psu.edu/v... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.