Article thumbnail

Pseudomonas aeruginosa AlgR Regulates Type IV Pilus Biosynthesis by Activating Transcription of the fimU-pilVWXY1Y2E Operon▿

By Belen Belete, Haiping Lu and Daniel J. Wozniak


The response regulator AlgR is required for Pseudomonas aeruginosa type IV pilus-dependent twitching motility, a flagellum-independent mode of solid surface translocation. Prior work showed that AlgR is phosphorylated at aspartate 54, and cells expressing an AlgR variant that cannot undergo phosphorylation (AlgRD54N) lack twitching motility. However, the mechanism by which AlgR controls twitching motility is not completely understood. We hypothesized that AlgR functioned by activating genes within the prepilin fimU-pilVWXY1Y2E cluster that are necessary for type IV pilin biogenesis. Reverse transcriptase PCR analysis showed that the fimU-pilVWXY1Y2E genes are cotranscribed in an operon, which is under the control of AlgR. This supports prior transcriptional profiling studies of wild-type strains and algR mutants. Moreover, expression of the fimU-pilVWXY1Y2E operon was reduced in strains expressing AlgRD54N. DNase footprinting and electrophoretic mobility shift assays demonstrate that AlgR but not AlgRD54N bound with high affinity to two sites upstream of the fimU-pilVWXY1Y2E operon. Altogether, our findings indicate that AlgR is essential for proper pilin localization and that phosphorylation of AlgR results in direct activation of the fimU-pilVWXY1Y2E operon, which is required for the assembly and export of a functional type IV pilus

Topics: Molecular Biology of Pathogens
Publisher: American Society for Microbiology (ASM)
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.