Skip to main content
Article thumbnail
Location of Repository

The Mechanism of Action of β-d-2′-Deoxy-2′-Fluoro-2′-C-Methylcytidine Involves a Second Metabolic Pathway Leading to β-d-2′-Deoxy-2′-Fluoro-2′-C-Methyluridine 5′-Triphosphate, a Potent Inhibitor of the Hepatitis C Virus RNA-Dependent RNA Polymerase▿

By Eisuke Murakami, Congrong Niu, Haiying Bao, Holly M. Micolochick Steuer, Tony Whitaker, Tammy Nachman, Michael A. Sofia, Peiyuan Wang, Michael J. Otto and Phillip A. Furman


β-d-2′-Deoxy-2′-fluoro-2′-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) RNA replication in an HCV replicon assay. The 5′-triphosphate of PSI-6130 is a competitive inhibitor of the HCV RNA-dependent RNA polymerase (RdRp) and acts as a nonobligate chain terminator. Recently, it has been shown that the metabolism of PSI-6130 also results in the formation of the 5′-triphosphate of the uridine congener, β-d-2′-deoxy-2′-fluoro-2′-C-methyluridine (PSI-6206; RO2433). Here we show that the formation of the 5′-triphosphate of RO2433 (RO2433-TP) requires the deamination of PSI-6130 monophosphate and that RO2433 monophosphate is subsequently phosphorylated to the corresponding di- and triphosphates by cellular UMP-CMP kinase and nucleoside diphosphate kinase, respectively. RO2433-TP is a potent inhibitor of the HCV RdRp; however, both enzymatic and cell-based assays show that PSI-6130 triphosphate is a more potent inhibitor of the HCV RdRp than RO2433-TP

Topics: Antiviral Agents
Publisher: American Society for Microbiology (ASM)
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.