Article thumbnail

Colonization and release processes of viruses and prokaryotes on artificial marine macroaggregates.

By Yvan Bettarel, Chiaki Motegi, Markus G Weinbauer and Xavier Mari

Abstract

International audienceMarine organic aggregates are sites of high of viral accumulation; however, still little is known about their colonization processes and interactions with their local bacterial hosts. By taking advantage of a novel approach (paramagnetic functionalized microsphere method) to create and incubate artificial macroaggregates, we examined the small-scale movements of viruses and bacteria between such marine snow particles and the surrounding water. The examination of the codynamics of both free-living and attached viral and bacterial abundance, over 12 hours of incubation in virus-free water, suggests that aggregates are rather comparable to viral factories than to viral traps where a significant part of the virions production might be locally diverted to the water column. Also, the near-zero proportion of lysogenized cells measured in aggregates after mitomycin-C induction seems to indicate that lysogeny is not a prominent viral reproduction pathway in organic aggregates where most viruses might rather be virulent. Finally, we hypothesize that, contrary to bacteria, which can use both strong attachment and detachment from aggregates (two-way motion of bacteria), the adsorption of planktonic viruses appears to be numerically negligible compared to their massive export from the aggregates into the water column (one-way motion of viruses)

Topics: [SDE.BE]Environmental Sciences/Biodiversity and Ecology
Publisher: 'Oxford University Press (OUP)'
Year: 2016
DOI identifier: 10.1093/femsle/fnv216
OAI identifier: oai:HAL:hal-01436815v1
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles