Location of Repository

Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils

By Shijun Wang, Mathieu-Benoit Voisin, Karen Y. Larbi, John Dangerfield, Christoph Scheiermann, Maxine Tran, Patrick H. Maxwell, Lydia Sorokin and Sussan Nourshargh

Abstract

The mechanism of leukocyte migration through venular walls in vivo is largely unknown. By using immunofluorescence staining and confocal microscopy, the present study demonstrates the existence of regions within the walls of unstimulated murine cremasteric venules where expression of key vascular basement membrane (BM) constituents, laminin 10, collagen IV, and nidogen-2 (but not perlecan) are considerably lower (<60%) than the average expression detected in the same vessel. These sites were closely associated with gaps between pericytes and were preferentially used by migrating neutrophils during their passage through cytokine-stimulated venules. Although neutrophil transmigration did not alter the number/unit area of extracellular matrix protein low expression sites, the size of these regions was enlarged and their protein content was reduced in interleukin-1β–stimulated venules. These effects were entirely dependent on the presence of neutrophils and appeared to involve neutrophil-derived serine proteases. Furthermore, evidence was obtained indicating that transmigrating neutrophils carry laminins on their cell surface in vivo. Collectively, through identification of regions of low extracellular matrix protein localization that define the preferred route for transmigrating neutrophils, we have identified a plausible mechanism by which neutrophils penetrate the vascular BM without causing a gross disruption to its intricate structure

Topics: Articles
Publisher: The Rockefeller University Press
OAI identifier: oai:pubmedcentral.nih.gov:2118318
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    Preview


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.