Article thumbnail

Microstructural and mechanical properties of friction stir welded Cu-30Zn brass alloy at various feed speeds: Influence of stir bands

By Madjid Sarvghad Moghaddam, Reza Parvizi, Mohsen Haddad-Sabzevar and Ali Davoodi

Abstract

In this study, the effect of various feed speeds on microstructure and mechanical properties of friction stir welded Cu–30Zn brass alloy is investigated. Rotation speed was fixed at 950rpm and feed speed varied in the range of 190–375mm/min. Examination of the microstructure showed very fine grains with some deformed grains in the stirred zone and some coarser grains in the thermo-mechanically affected zone and base metal. A unique deformation pattern, namely “stir band” in the stirred zone region was identified and its density increased by increase in feed speed. Results showed that the grain size profile was independent of feed speed and the hardness values decreased by increase in feed speed. Increase in feed speed led to a slight improvement of yield strength and ultimate tensile strength, associated to continuous spring-like morphology of stir bands acting as a strengthening structure. However, ductility reduces considerably from 57 to 27%. Moreover, it is observed that during tensile test, fracture cracks originate exactly adjacent to the stir bands

Topics: Mechanical, Microstructure, Welding
Publisher: 'Elsevier BV'
Year: 2011
DOI identifier: 10.1016/j.matdes.2011.01.015
OAI identifier: oai:eprints.qut.edu.au:95931
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

Suggested articles