Location of Repository

Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions

By J.L. Knipping, L.D. Bilenker, A.C. Simon, M. Reich, F. Barra, A.P. Deditius, C. Lundstrom, I. Bindeman and R. Munizaga

Abstract

Kiruna-type iron oxide-apatite (IOA) deposits are an important source of Fe ore, and two radically different processes are being actively investigated for their origin. One hypothesis invokes direct crystallization of immiscible Fe-rich melt that separated from a parent silicate magma, while the other hypothesis invokes deposition of Fe-oxides from hydrothermal fluids of either magmatic or crustal origin. Here, we present a new model based on Fe and O stable isotopes and trace and major element geochemistry data of magnetite from the ~350 Mt Fe Los Colorados IOA deposit in the Chilean iron belt that merges these divergent processes into a single sequence of events that explains all characteristic features of these curious deposits. We propose that concentration of magnetite takes place by the preferred wetting of magnetite, followed by buoyant segregation of these earlyformed magmatic magnetite-bubble pairs, which become a rising magnetite suspension that deposits massive magnetite in regionalscale transcurrent faults. Our data demonstrate an unambiguous magmatic origin, consistent with the namesake IOA analogue in the Kiruna district, Sweden. Further, our model explains the observed coexisting purely magmatic and hydrothermal-magmatic features and allows a genetic connection between Kiruna-type IOA and iron oxide-copper-gold deposits, contributing to a global understanding valuable to exploration efforts

Publisher: Geological Society of America
Year: 2015
OAI identifier: oai:researchrepository.murdoch.edu.au:27697
Provided by: Research Repository
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • http://researchrepository.murd... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.