Fast generation of 3D deformable moving surfaces

Abstract

Dynamic surface modeling is an important subject of geometric modeling due to their extensive applications in engineering design, entertainment and medical visualization. Many deformable objects in the real world are dynamic objects as their shapes change over time. Traditional geometric modeling methods are mainly concerned with static problems, therefore unsuitable for the representation of dynamic objects. Apart from the definition of a dynamic modeling problem, another key issue is how to solve the problem. Because of the complexity of the representations, currently the finite element method or finite difference method is usually used. Their major shortcoming is the excessive computational cost, hence not ideal for applications requiring real-time performance. We propose a representation of dynamic surface modeling with a set of fourth order dynamic partial differential equations (PDEs). To solve these dynamic PDEs accurately and efficiently, we also develop an effective resolution method. This method is further extended to achieve local deformation and produce n-sided patches. It is demonstrated that this new method is almost as fast and accurate as the analytical closed form resolution method and much more efficient and accurate than the numerical methods

Similar works

This paper was published in Bournemouth University Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.