Article thumbnail

Titanium Carbide Derived Nanoporous Carbon for Energy-Related Applications

By Ranjan Dash, John Chmiola, Gleb Yushin, Yury Gogotsi, Giovanna Laudisio, Jonathan Singer, John E Fischer and Sergei Kucheyev


High surface area nanoporous carbon has been prepared by thermo-chemical etching of titanium carbide TiC in chlorine in the temperature range 200–1200 °C. Structural analysis showed that this carbide-derived carbon (CDC) was highly disordered at all synthesis temperatures. Higher temperature resulted in increasing ordering and formation of bent graphene sheets or thin graphitic ribbons. Soft X-ray absorption near-edge structure spectroscopy demonstrated that CDC consisted mostly of sp2 bonded carbon. Small-angle X-ray scattering and argon sorption measurements showed that the uniform carbon-carbon distance in cubic TiC resulted in the formation of small pores with a narrow size distribution at low synthesis temperatures; synthesis temperatures above 800 °C resulted in larger pores. CDC produced at 600–800 °C show great potential for energy-related applications. Hydrogen sorption experiments at −195.8 °C and atmospheric pressure showed a maximum gravimetric capacity of ∼ 330 cm3/g (3.0 wt.%). Methane sorption at 25 °C demonstrated a maximum capacity above 46 cm3/g (45 vol/vol or 3.1 wt.%) at atmospheric pressure. When tested as electrodes for supercapacitors with an organic electrolyte, the hydrogen-treated CDC showed specific capacitance up to 130 F/g with no degradation after 10 000 cycles

Topics: porous carbon, etching, adsorption, BET surface area, electron microscopy, small angle x-ray scattering
Publisher: ScholarlyCommons
Year: 2006
DOI identifier: 10.1016/j.carbon.2006.04.035
OAI identifier:
Provided by: ScholarlyCommons@Penn

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.