Rate constants for the reaction of NO and HO2 with peroxy radicals formed from the reaction of OH, Cl or NO3 with alkenes, dienes and α,β-unsaturated carbonyls

Abstract

Rate constants for the gas-phase reaction of NO and HO2 radicals with 33 peroxy radicals are presented. The peroxy radicals are derived from the addition of either OH, Cl, or NO3 radicals, followed by addition of O2, to a series of alkenes: tetrachloroethene, ethene, 2,3-dimethyl but-2-ene, butadiene, 2,3,4,5-tetramethyl hexa-2,4-diene, 1,1,2,3,4,4-hexachlorobutadiene, but-1-ene-3-one (methyl vinyl ketone) and 2,3-dimethylpen-2-ene-4-one. The rate constants were predicted using a correlation between the singly occupied molecular orbital (SOMO) energy of the peroxy radical and the logarithm of the rate constant for reaction with NO or HO2. A discussion of the accuracy of the method and the trends in the reactivity of the titled peroxy radicals is given. Peroxy radicals derived from halogenated alkenes have larger values of rate constants for reaction with NO relative to reaction with HO2, indicating that they are more likely to react with NO, rather than HO2, in the atmosphere. The reverse is true for peroxy radicals derived from alkylated alkenes

Similar works

This paper was published in Birkbeck Institutional Research Online.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.