Article thumbnail

All the {\lambda}-Terms are Meaningful for the Infinitary Relational Model

By Pierre Vial

Abstract

Infinite types and formulas are known to have really curious and unsound behaviors. For instance, they allow to type {\Omega}, the auto- autoapplication and they thus do not ensure any form of normalization/productivity. Moreover, in most infinitary frameworks, it is not difficult to define a type R that can be assigned to every {\lambda}-term. However, these observations do not say much about what coinductive (i.e. infinitary) type grammars are able to provide: it is for instance very difficult to know what types (besides R) can be assigned to a given term in this setting. We begin with a discussion on the expressivity of different forms of infinite types. Then, using the resource-awareness of sequential intersection types (system S) and tracking, we prove that infinite types are able to characterize the order (arity) of every {\lambda}-terms and that, in the infinitary extension of the relational model, every term has a "meaning" i.e. a non-empty denotation. From the technical point of view, we must deal with the total lack of productivity guarantee for typable terms: we do so by importing methods inspired by first order model theory.Comment: 12 page

Topics: Computer Science - Programming Languages
Year: 2018
OAI identifier: oai:arXiv.org:1612.06740

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.