Article thumbnail

Image Denoising Via Collaborative Support-Agnostic Recovery

By Muzammil Behzad, Mudassir Masood, Tarig Ballal, Maha Shadaydeh and Tareq Y. Al-Naffouri


In this paper, we propose a novel image denoising algorithm using collaborative support-agnostic sparse reconstruction. An observed image is first divided into patches. Similarly structured patches are grouped together to be utilized for collaborative processing. In the proposed collaborative schemes, similar patches are assumed to share the same support taps. For sparse reconstruction, the likelihood of a tap being active in a patch is computed and refined through a collaboration process with other similar patches in the same group. This provides very good patch support estimation, hence enhancing the quality of image restoration. Performance comparisons with state-of-the-art algorithms, in terms of SSIM and PSNR, demonstrate the superiority of the proposed algorithm

Topics: Computer Science - Computer Vision and Pattern Recognition
Year: 2016
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.